
CS 61B Discussion 10 Spring 2015

1 Heaps of fun R©
(a) Assume that we have a binary min-heap (smallest value on top) data structue called Heap

that stores integers and has properly implemented insert and removeMin methods. Draw the
heap and its corresponding array representation after each of the operations below:
Heap h = new Heap(5); //Creates a min-heap with 5 as the root
[5] 5
h.insert(7);
[5,7] 5

/
7

h.insert(3);
[3,7,5] 3

/ \
7 5

h.insert(1);
[1,3,5,7] 1

/ \
3 5

/
7

h.insert(2);
[1,2,5,7,3] 1

/ \
2 5

/ \
7 3

h.removeMin();
[2,3,5,7] 2

/ \
3 5

/
7

h.removeMin();
[3,7,5] 3

/ \
7 5

(b) Your friend Alyssa P. Hacker challenges you to quickly implement a max-heap data struc-
ture - "Hah! I’ll just use my min-heap implementation as a template", you think to yourself.
Unfortunately, your arch-nemesis Malicious Mallory deletes your min-heap.java file. You
notice that you still have the min-heap.class file; could you use it to complete the challenge?
Yes. For every insert operation negate the number and add it to the min-heap. For a remove-
Max operation call removeMin on the min-heap and negate the number returned.

CS 61B, Spring 2015, Discussion 10 1



2 HashMap Modification (from 61BL SU2010 MT2)
(a) When you modify a key that has been inserted into a HashMap will you be able to retrieve

that entry again? Explain?

� Always � Sometimes � Never

It is possible that the new Key will end up colliding with the old Key. Only in this rare
situation will we be able to retrieve the value. It is very bad to modify the Key in a Map
because we cannot guarantee that the data structure will be able to find the object for us if
we change the Key.

(b) When you modify a value that has been inserted into a HashMap will you be able to retrieve
that entry again? Explain?

� Always � Sometimes � Never

You can safely modify the value without any trouble. If you reference the value that you put
in the tree, the changes will be reflected.

3 Sum Paths
void printSumPaths(Node t, int k) {

if (t != null) {
sumPathsHelper(t, 0, "", k);

}
}

void sumPathsHelper(Node curNode, int curSum, String curPath, int k) {
curSum += curNode.value;
curPath += curNode.value + " ";

if (curNode.left == null && curNode.right == null) {
if (curSum == k) {

System.out.println(curPath);
}
return;

}

if (curNode.left != null) {
sumPathsHelper(curNode.left, curSum, curPath, k);

}

if (curNode.right != null) {
sumPathsHelper(curNode.right, curSum, curPath, k);

}
}
Bonus question solutions: In the worst case, the tree height is N. At level

h, the code performs a concatenation of strings of length k1 * h + k2,
e.g.

"5"
"5 " + "33"

CS 61B, Spring 2015, Discussion 10 2



"5 33 " + "91"
"5 33 91 " + "10"

Since String concatenation takes linear time, this results in a runtime of

1+2+3+ ...+N = Θ(N2).

4 Bonus Question
Describe a way to implement a linked list of Strings so that removing a String from the list takes
constant time. You may assume that the list will never contain duplicates.
Use a doubly linked list and a HashMap whose keys are the Strings in the list and whose values are
pointers to the nodes of the list. Then when removing a String, look up the corresponding node in
the HashMap and delink that node from the list.

CS 61B, Spring 2015, Discussion 10 3


