
CS 61B Discussion 13 Spring 2015

1 Graph Representations
For the graph above, draw the adjacency list and adjacency matrix representation.

2 DFS and BFS
Give the DFS Preorder, DFS Postorder, and BFS order of the graph starting from vertex A. When-
ever there is a choice of which node to visit next, visit nodes in alphabetical order.

DFS Preorder: ABCPE
DFS Postorder: PCEBA
BFS Order: ABCEP

3 Topological Sorting
Which edge would we need to remove so that there exists a topological sort for the graph above?
Give a valid topological sort (Hint: Use DFS Postorder).
We’d need to remove either the edge from B to E or E to B.

CS 61B, Spring 2015, Discussion 13 1



Supposing we remove the edge from E to B, we can find the DFS Postorder of
the remaining graph from A and then R (or R then A, either way works).

If we remove the edge from E to B, then the DFS Postorder from A is the same
as above: PCEBA. We then find the posvisit order of R. This gives us an
overall postorder of PCEBAR.

A valid topological ordering is then RABECP.

CS 61B, Spring 2015, Discussion 13 2



4 Graph Algorithm Design: Bipartite Graphs
An undirected graph is said to be bipartite if all of its vertices can be divided into two disjoint sets
U and V such that every edge connects an item in U to an item in V . For example, the graph on
the left is bipartite, whereas on the graph on the left is not. Provide an algorithm which determines
whether or not a graph is bipartite. What is the runtime of your algorithm?

To solve this problem, we simply run a special version of DFS or BFS from any
vertex. This special version marks the start vertex with a U, then each
of its children with a V, and each of their children with a U, and so
forth. If any vertex already has a U and the visited vertex has a V (or
vice-versa), then the graph is not bipartite.

If the graph is not connected, we repeat this process for each connected
component.

If the algorithm completes, marking every vertex in the graph, then it is
bipartite.

5 Extra Algorithm Design: Shortest Directed Cycles
Provide an algorithm that finds the shortest directed cycle in a graph in O(EV) time and O(E)
space.
The key realization here is that the shortest directed cycle involving a

particular source vertex is just some shortest path plus one edge back to
s. Using this knowledge, we can create a shortestCycleFromSource(s)
subroutine. This subroutine first runs BFS on s, then checks every edge
in the graph to see if it points at s. For each such edge originating at
vertex v, it computes the cycle length by adding one to distTo(x) (which
was computed by BFS).

This subroutine takes O(E +V ) time because it is BFS. To find the shortest
cycle in the entire graph, we simply call shortestCycleFromSource() for
each vertex, resulting in an V ∗O(E +V ) = O(EV +V 2) runtime. Since E >V,
this is just O(EV ).

6 Extra: Daniel’s Dare for the Daring
Master brogrammer, Edwin Edgehands decides to try his hand at implementing the Depth First
traversal algorithm. Here is Edgehands’ pseudocode:
Create a new Stack of Vertices

Push the start vertex and mark it
While the fringe is not empty:

pop a vertex off the fringe and visit it

CS 61B, Spring 2015, Discussion 13 3



for each neighbor of the vertex:
if neighbor not marked:

push neighbor onto the fringe
mark neighbor

Your TA, Joshua Shrug claims that the above traversal isn’t quite DFS. Give an example graph
where it may not traverse in DFS order.

CS 61B, Spring 2015, Discussion 13 4


