
CS 61B Discussion 9 Spring 2015
1 2-3-4 Tree Insertion and Deletion
Given the following 2-3 tree, draw what the tree would look like after inserting 18.

Original tree: After inserting 18:
[8] [8]

/ \ / \
[6] [14] [6] [14, 16]

/ \ / \ / \ / | \
[3] [7] [10] [15, 16] [3] [7] [10] [15] [18]

2 BSTs and Balance
Given the following binary trees, determine if each is a BST, and whether it has minimum-BST-
height (circle the correct answer). By minimum-BST-height, we mean that the height of the tree is
the same as the height of the optimal binary search tree containing the given elements.

6 10 9
/ \ / \ / \

5 9 6 12 7 11
/ / \ / / / \ \

2 7 10 3 11 5 8 13
\ / \ / \

3 1 7 3 8
\
4

Valid: TRUE Valid: FALSE Valid: FALSE
Balanced: FALSE Balanced: FALSE Balanced: TRUE

Suppose we know the height H and number of nodes N of a BST. Can we determine whether or not
this BST is minimum-BST-height without having to check the values of each node? If so, how? If
not, why not?

Check that h = floor(log(n))where h is the height of the tree and n is the number of nodes.

3 Binary Tree Creation
Implement a function that, given a sorted array of integers, creates and returns a maximally bal-
anced Binary Search Tree. You can assume you have a method slice that takes in an integer array
and two indices to slice between (inclusive of the first index): [needs updating]
slice([1, 2, 3], 0, 1) -> [1]
slice([1, 2, 3], 1, 3) -> [2, 3]

CS 61B, Spring 2015, Discussion 9 1



Use the following definition of a Binary Search Tree Node (BSTNode):
public class BSTNode {

public BSTNode left, right;
public int value;

public BSTNode(int n) {
value = n;

}
}

public BSTNode makeBST(int[] nums) {
if (nums.length == 0) return null;

int mid = nums.length / 2;
BSTNode result = new BSTNode(nums[mid]);

result.left = makeBST(slice(nums, 0, mid));
result.right = makeBST(slice(nums, mid + 1, nums.length));

return result;
}

Runtime recap: What is the runtime of makeBST()?

O(n)

4 Common Ancestor
Challenge Problem: Implement a function that, given a valid BST and two integers, returns the
BSTNode X that is the deepest common ancestor of the two integers. By deepest, we mean that
its distance from the root is maximized. By common ancestor, we mean that n1 <= X.val and
n2 >= X.val. You may assume that n1 < n2. If no such node exists, return null.

public BSTNode commonAncestor(BSTNode root, int n1, int n2) {
if (n1 > n2)

return null;
if ((n1 <= root.val) && (n2 >= root.val))

return root;
if (n2 < root.val)

return commonAncestor(root.left, n1, n2);
if (n1 > root.val)

return commonAncestor(root.right, n1, n2);
return null;

}

Runtime recap: What is the runtime of commonAncestor()?

O(log n) on a balanced tree, but O(n) in general.

CS 61B, Spring 2015, Discussion 9 2


