CS61B Spring 2015 Guerrilla Section 2 Worksheet

Akhil Batra, Leo Colobong, Nick Fong, Jasmine Giang, Laura Harker, Anusha Ramakuri, Charles Zhang, Jason Zhang, Giulio Zhou

14 March 2015

Directions: In groups of 4-5, work on the following exercises. Do not proceed to the next exercise until everyone in your group has the answer and understands why the answer is what it is. Of course, a topic appearing on this worksheet does not imply that the topic will appear on the midterm, nor does a topic not appearing on this worksheet imply that the topic will not appear on the midterm.

1 Asymptotic Analysis

Given the following code snippet, give a bound in Big-O for the runtime with respect to the length of the String input.

```java
public void mystery(String input) {
    int n = input.length();
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            i = i*2;
            j = j*2;
        }
    }
}
```

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises in this section!
2 Asymptotic Proofs

Given the following block of code, answer the following questions. Assume that \(n \geq 1 \).

```java
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i; j = j*2) {
        System.out.println(i+j);
    }
}
```

(a) Prove that the code runs in approximately \(O(\log(n!)) \) time.
 Hint: \(\log(a \cdot b) = \log(a) + \log(b) \) and \(n! = n(n-1)(n-2)\ldots(2)(1) \)

(b) We will now prove that \(\log(n!) = \Theta(n \log(n)) \) in two steps:
 (i) Prove that \(\log(n!) = O(n \log(n)) \)
 Hint: \(\log(a^b) = b \log(a) \)
 (ii) Prove that \(\log(n!) = \Omega(n \log(n)) \)

STOP!

DON’T PROCEED UNTIL EVERYONE IN YOUR GROUP HAS FINISHED AND UNDERSTANDS ALL EXERCISES IN THIS SECTION!
3 Count Down

(a) Give bounds in Big-Theta (Θ) notation for the runtimes of the following methods with respect to the arguments passed in to the functions.

```java
public int countDown() {
    for (int i = 100; i >= 0; i--)
        System.out.println(i);
}

public int countDown(int length) {
    for (int i = length; i >= 0; i--)
        System.out.println(i);
}

public int launchRockets(int numRockets) {
    for (int i = 0; i < numRockets; i++)
        countDown();
    for (int i = 0; i < 100; i++)
        countDown(i);
}
```

(b) What if we changed the second for loop (on line 17) in `launchRockets(int numRockets)` to:

```java
for (int i = 0; i < numRockets; i++)
```

Would the running time of `launchRockets(int numRockets)` change, and if so, how?

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises in this section!
4 Data Structures (Stacks, Queues, Maps)

Using inheritance, define a class `TrackedQueue` that behaves like Queue except for an extra method, `maxSizeSoFar()` which returns an int corresponding to the maximum number of elements in this queue since it was constructed. Assume that the `Queue` class has the following methods:

```java
void enqueue(Object obj)
int size()
```

```java
public class TrackedQueue extends Queue {
    // Implementation
}
```

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises in this section!
5 Queue Implementation

Consider the following implementations for a queue:

(a) A `java.util.ArrayList` with the front of the queue at the end of the list (the $(n - 1)$th element in a queue of n elements) and the back of the queue at the start of the array (element 0). Assume that there is room in the array to enqueue an element.

(b) A singly linked list with an additional reference to the last node in the list (the tail), with the front of the queue last in the list and the back of the queue at the head of the list.

For each implementation, give estimates for the number of operations necessary to enqueue an element and to dequeue an element given that the queue has n elements. You can answer either with Big-O notation or by saying that the enqueue/dequeue takes “time proportional to X” for some X. Provide a brief explanation for your answers.

Implementation (a)

1. enqueue
2. dequeue

Implementation (b)

1. enqueue
2. dequeue

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises in this section!
6 ExpandableSet

Using inheritance, define a class ExpandableSet that behaves like Set (see below) except that when insert is called with a value to be inserted larger than the Set can currently hold, the Set doubles in size until the value can be added. ExpandableSet should have a no argument constructor that makes the initialize size of the Set to be 1.

```java
public class ExpandableSet extends Set {
    // Constructor
    public ExpandableSet() {
        initializeSize = 1;
        // Initialize array
        contains = new boolean[initializeSize];
    }

    // Insert method
    public void insert(int k) {
        contains[k] = true;
    }

    // Remove method
    public void remove(int k) {
        contains[k] = false;
    }

    // Member method
    public boolean member(int k) {
        return contains[k];
    }
}
```

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!
7 Trees (Extra for Experts)

(b) What is the inorder of this tree?