
Quick Refresher of Hashing for HW7
By Chris Jeng, op@berkeley.edu

Basics of hashCode
(Head First Java talks about hashCode and HashSet on pg 559 for about six total pages, a very quick

and digestible read. This guide is going to suck, so you should definitely looks elsewhere to get a better

feel for things)

We’ve seen before that all objects inherit at these two methods from the universal Object.java:

1) public boolean equals(Object o) – This means that you can make any object, and try

calling the .equals(whateverOtherObject)on it. By default of inheritance, this works for

ALL objects.

2) public String toString() – Fun fact: The default behavior is to return the address of

where the object is stored in hexadecimal. That’s what happens when you ask for

the .toString of a primitive array. Notice that some Objects like ArrayList and String

have overridden this sucky default behavior with more informative methods (like how

ArrayList will print out its contents).

There is yet another addition to this list: the hash code function.

3) public int hashCode() – Crude description: considers the data of an instance of a class

and tries to output a unique int based on that data.

Moral obligations of a hash code
1) (Required) If two objects are .equals, then their hash code values must be the same. This

requirement isn’t enforced by the compiler, but cheating this requirement would mean

HashMap and HashSet can’t work properly when storing this type of immoral object.

2) (Not required, but strongly preferred) If two objects are not .equals, then their hash code

values are always different. If this optional requirement is satisfied, the hash function is called

a “perfect hash”. A perfect hash can be thought of as a one-to-one mapping.

A “bit” of math
Let 𝒪 denote the set of all possible meaningfully-different instances of a class. In other

words, .equals between any two objects in 𝒪 return false.

Let ℤ32 denote the set of all possible numbers representable by a Java int (32 bits in a Java int, so

for any int 𝑥, −231 ≤ 𝑥 ≤ 231 − 1).

Then the hash function ℋ is a mapping

ℋ: 𝒪 → ℤ32

A perfect hash means different objects always map to different hash values. In other words,

Perfect Hash ⟺ ∀𝑜1, 𝑜2 ∈ 𝒪, ℋ(𝑜1) = ℋ(𝑜2) ⟹ 𝑜1 is .equals to 𝑜2

https://www.google.com/search?q=head+first+java&oq=head+first+java&aqs=chrome.0.0l6.1181j0j7&sourceid=chrome&es_sm=122&ie=UTF-8

